
Theoret. Chim. Acta (Berl.) 56, 93-112 (1980) 
THEORETICA CHIMICA ACTA 

~) by Springer-Verlag 1980 

The  Perturbation of a Po lymer  Molecular  
Orbital 

David Antony Morton-Blake 

Dept. of Chemistry, Trinity College, Dublin 2, Ireland 

The symmetry restrictions imposed by the Born-K~irmfin boundary condi- 
tions on a polymer in order to calculate its electronic band structure are 
relaxed by the separate introduction of two types of perturbation at a site 
on the polymer chain. The first simulates a defect or the close approach of a 
molecule by modifying the segment orbital functions in the environment of 
the site while the second simulates a change in the distance between one 
pair of adjacent segments by altering the interaction between them. When 
applied to a molecular orbital described by a Bloch function and arbitrary 
energy band these perturbations generate a small number of electronic 
states whose energies lie above and below those of the band. The sign of 
the energy shift depends on the symmeti-y of the crystal orbital perturbed. 

Key words: Polymer M O s - P e r t u r b a t i o n  of Bloch func t ions-Discre te  
states. 

1. Introduction 

Crystal orbital calculations on a polymer chain using Bloch functions and 
Born-K~irmfin boundary conditions [1] necessarily imply a crystal lattice 
possessing long-term order, i.e. translational symmetry, and for practical 
reasons must be confined to chains whose unit segments are not too large. As 
had also been done for (three dimensional) crystalline lattices [2] attempts were 
made recently to relax these symmetry restrictions by permitting the occur- 
rence of certain internal rotations and bond alternations [3] or by creating 
chain ends in the Born-Kfirmftn cyclic lattice [4] by a "perturbative rupture"  of 
the polymer chain. 

The result of such a symmetry lowering by reducing short-term order (e.g. 
through bond alternation or internal rotation [3]) is the creation or extension of 
band gaps and the general modifications of the energy bands of the "regular"  
or high-symmetry polymer chain. This conclusion follows from line-group 
symmetry considerations [5] (partly), from a direct calculation on the 
symmetry-lowered chain incorporating the extended unit segment [6], or 
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~alternatively f rom a per turbat ion calculation in which the distortion is intro- 
duced as a per turbat ion of the undistorted, high-symmetry wave functions [3]. 
If however  the distortion is a non-periodic per turbat ion such as that involved in 
the rupture of the polymer  chain [4] or in creating a crystal surface in the solid 
lattice the result on the energy band structure may be the formation of discrete 
levels ("surface states" in solid-state theory [7, 8]) in energy regions which 
would consist of "forbidden gaps" for the undistorted chain or lattice. 

While the concept of " impur i ty"  levels or other  inter-band energy states which 
may exist for a crystalline lattice are of obvious importance and well-known in 
solid-state studies, the possibility of such states occurring for a polymer  chain 
has not been so widely discussed. Since it seems reasonable to suppose that a 
polymer  might undergo a chemical reaction at a symmetry- lowered or defect 
site in the chain, it would appear  desirable to investigate the effect of such sites 
on the band structure in order to see whether  the two possibilities m e n t i o n e d -  
the formation or extension of band gaps, or the creation of discrete states - can 
be applied to the question of reactivity. 

In order to develop a quantum chemical theory of polymers which has the 
possibility of including reactions, methods of calculation involving a perfect  
Born-Kfirmfin cyclic lattice may have to be modified in order to take into 
account the important  effects of chain defects or symmetry- lowered sites. Such 
sites exist statically in the solid state polymer  and dynamically in solution. 
Because of the impracticability of working with a unit segment so enlarged as 
to include the desired defects a more  tractable approach would be to subject 
the crystal orbital (Bloch molecular  orbital) functions to the necessary pertur-  
bations. 

In this paper  a method is presented which introduces two types of perturbat ion 
centred at a particular site on a general polymer  so as to affect a small number  
of chain segments. In Sects. 2 and 3 a perturbat ion alters the Coulomb 
integrals of these segments: in a real chain this might for example describe a 
lattice defect site or, in solution, the close approach of a reactant or solvent 
molecule.  In Sect. 4 another  type of perturbat ion is applied which modifies a 
single link between two segments so as to describe a bond compression or 
extension at this point. 

2. Segment Perturbation: Theory 

2.1. The Perturbation 

We propose to per turb a polymer  chain by applying a potential  V which is 
centred at one of the chain segments ]. It  will be convenient to label this 
segment  ] -- 0 so that positive and negative j values label segments to the right 
and left of the per turbat ion site (Fig. 1). 

As our set of zeroth order  functions we shall use the one-dimensional  
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perturbation V 

Fig. 1. The segment perturbation V of a linear polymer, with V centred on the segment j = 0, the 
"perturbation site" 

monoelectronic Bloch wave functions ~~ defined [1, 9] by 

• 

�9 ~ = N -1/2 ~ exp (ijk)xj (odd N, - w  < k ~ vr). (1) 
j=0 

Employing the Born-Kfirmfin boundary conditions Eq. (1) expresses the chain 
wave functions as a linear combination of the N segment functions Xj of the 
cyclic lattice. In this work it will be assumed that the set Xj (which might, for 
example, consist of linear combinations of the atomic orbitals comprising the 
unit segment) has been calculated using some standard tight-binding computa- 
tional method [9] applicable to a polymer chain. It will also be assumed for 
simplicity that the X~ are mutually orthogonal; a relaxation of this restriction by 
admitting non-zero overlap integrals between the segment functions would 
result merely in the inclusion of a multiplicative factor of order unity in (1), and 
would not affect the conclusions of the work. 

The monoelectronic functions defined by (1) will be taken to be eigenfunctions 
of an Extended-Hfickel-type effective hamiltonian H ~ for the cyclic polymer 
chain, according to the equation 

HO, i ,0 (k )  = 

This equation also defines an energy E ~ for each value of k, i.e. for each 
microstate ~(k). The continuity of k ensures that the ensemble of energy 
values E~ constitute an energy band. The mixing of the microstate wave 
functions ~~  due to the perturbation V is now considered so as to give rise 
to new chain wave functions ~ which are expressible as linear combinations of 
n orthogonal microstate functions: 

�9 = ( 2 )  
i=1 

and which are eigenfunctions of the hamiltonian H = H ~ + V of the perturbed 
system, n is the number of states into which we conveniently divide up the 
Brillouin zone for the purpose of the calculation. It is to be distinguished from 
N which is the true, practically infinite, number  of microstates constituting the 
Brillouin zone, and which renders k ( = 2wp/N, where p is an integer between 
- � 8 9  and + IN) a continuous variable. The states described by (2), generated 
b y  the perturbation, may be either discrete, or, like the set ~~ quasi- 
continuous. 

From (1) the general element V(kl, k2) of the Bloch MO perturbation matrix is 
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given by 

= i ~~ V~~ dr  W(kl, k2) 

= n  -1 ~ ~ exp(-ijlkj) exp(ij2k2)fx~Vxj~ dr 
h=0 iz=O 

V(k~, k2)= n -a ~, ~, exp (-ijlka) exp (ij2k2)V/,i= 
h=O 12=0 

where Vm=, the general element of the segment orbital perturbation matrix, is 
the change in the value of the integral S x*H~ dr (expressing the interaction 
between segments jl and J2) when the perturbation is applied. The • symbols 
over the sigmas indicate summations over positive and negative j 's up to the 
same formal limits as in (1), however because of the convergence of the series 
only few terms need be considered. 

We shall perturb the polymer wave function through the coulomb terms 
S x~Hxj dr of the segment orbitals. The segment orbital at j = 0 will be 
perturbed the most; the pair in the j = 4-1 segments come next, to be followed 
by those in j = 4-2, etc. It is proposed that the segment perturbation term Vm= 
can be represented as the product of two equivalent functions u(jl) and u(j2) 
whose values diminish with increasing displacement IJl from the perturbation 
site at j = 0. Thus Vm2 would then as required be greatest when both segments 
involved are in the vicinity of the perturbation ( j l -  J2-~ 0) and diminish as the 
interactions of progressively more distant elements are considered. We there- 
fore write Vhj2=Vu*(jl)u(j2) where v ( ~  Voo) is the amplitude of the perturba- 
tion if u(j) is scaled so that u(0) = 1. This allows the summations in V(k~, k2) to 
separate into two equivalent functions of k: 

V(k~, k 2 ) = v  ~ exp (-ijkl)U*(j) ~ exp (ijk2)u(j) 
n 1=0 j=0 

V(kl, k2) = v W*(k~) W(k2) (3) tl 
where 

W(k)=  exp(ijk)u(j)=l+2 ~, u(j)cosjk. (4) 
1=o j=l 

The perturbation is assumed to be symmetric, so that u(j)= u(-j), when the •  
summation can be replaced by one involving positive j only. 

A natural concern at this stage is whether the practical consideration of limiting 
n to a finite value (rather than using the practically infinite quantity N usually 
implied in the Bloch function (1) might invalidate the calculation proposed. We 
shall see that as n -  the number of microstates selected to interact along the 
b a n d - i s  increased, the 1/n factor in the V(kl, k2) expression (3) produces 
quite a rapid convergence, thus permitting the use of a manageable number of 
microstates. 
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2.2. The Unperturbed Energy Band 

The energy matrix /-Jr to be diagonalized is composed of the diagonal matrix 
E ~  consisting of the band energies E~ of the microstates ~ ~  of 
the Bloch function perturbation matrix t r whose elements we have discussed: 

H = E ~ + V .  (5)  

In order to perform a perturbation calculation of the kind developed here we 
shall find it convenient to assume a hypothetical function to describe the 
unperturbed energy band E~ The simplest type of band meeting the 
necessary conditions 

dk /k=o= \ T / k = •  

and 

E~ = E~ 

is one having the dispersion equation 

E~ = E ~ + Ew sin 2 �89 

Since the constant reference energy term E0 would appear only in the diagonal 
elements of H its only effect would be to shift the eigenvalues by the same 
amount, Eo. The term is therefore irrelevant to the perturbation and can be 
omitted; the resulting energy band expression generating the E ~ matrix is thus 

E~ = Ew sin 2 �89 (6) 

where k, is the value of the i th microstate and ]Ew] the width of the energy 
band. The sign of Ew determines whether the dispersion energy function has a 
minimum or a maximum at the centre (k = 0) or at the edges (k = +Tr), of the 
Brillouin zone. 

2.3 Results of the Perturbation 

Before embarking on the numerical calculations we can already make some 
useful qualitative predictions about the results. When the microstate t)~ is 
perturbed in the presence of all the others its energy, taken to 2nd order, is 
given by 

, I v ( k .  k2)l 2 
E ( k l )  = E ~  q- V(kl' kl)  Jr ~k~ E~ E~ ' (7) 

the elements V(kl, k2) being given by Eqs. (3) and (4). Now the combined 
effect of the destructive interference of the cos jk factor in (4) and of the 
attenuating nature of the u(j) function is to make W(k) largest for k =0 .  
Consequently the most significant elements V(kl, k2) in (7) are those derived 
from microstates 4~~ at the centre of the Brillouin zone. However  from the 
condition E~ = E~ we see that the 2nd order correction to the energy 
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of to~ = 0) vanishes since the summation in (7), running over positive and 
negative kj values, generates mutually cancelling terms. 

In short the effect of the perturbation is to shift the energies of the microstates 
which are close to k = 0. The direction of the shift depends on the sign of V in 
the region of the segments which are the most affected. Using the representa- 
tion implied by Eqs. (3) and (4) we would expect a potential of positive 
amplitude v to produce upward-displaced energy states, while if v < 0  the 
perturbation energies would be negative. This also implies that the new states 
resulting from a positive potential perturbing a t0~ band with a positive Ew 
in (6) would not be pronounced,  and might not even be distinguishable at all: 
for a band with a minimum at k = 0 any perturbation state produced above the 
band would, for small perturbations, have to derive from to~ microstates for 
which k -~ ~r which, we have just argued, gives rise to small V(kl, k2) elements. 
(A small perturbation of to~ = 0) would shift it into an energy region already 
occupied by microstates.) The creation of discrete perturbation states from a 
E~ band with a minimum at k = 0 can most easily be achieved with a 
negative V potential, while conversely those from a band with a maximum at 
k = 0 could be created from a positive V potential. 

The complementarity of the signs of Ew and of v may be seen from (5): 
reversing the signs of both E ~ (which would result from replacing Ew by -Ew)  
and V would produce a matrix - H  whose eigenvalues are just the negative of 
those of H. The effect of the sign changes is thus to move the perturbation 
states from one side of the E~ = 0) level to the other. 

2.4. Real Orbital Wave Functions 

It is useful to exploit the chain symmetry element relating segments on either 
side of the perturbation site at ] = 0. This is because practical considerationS 
restrict us to a finite value for n, and so the application of symmetry might 
permit a more judicious choice of microstates to represent the band. 

Additive and subtractive combinations of the (degenerate) Bloch MOs for k 
and - k  defined in (1), namely 

,~,o(k ) = ~ [q,0(k ) • q,0(_ k)] (0 ~ k ~ ~), (8) 

result in the real chain orbital functions 

,i,O(k ) = , / Z ( k )  
+I/2(N--I) 

~/ ~ ~ Xj cs (]k) (0 <~ k ~< ~-) (9) 
i=0 

where cs means "cosine" if the combination is additive (~o) and "sine" if it is 
subtractive (~0). Because of the k range defined in (1) the combination (8) 
does not couple positive with negative k values when k = 0 or k = -rr; hence in 
(9) the symbol Z(k)  means "1"  if k is 0 or -n- and "2"  in all other cases. 

Since V is declared to be a symmetric perturbation [V(] )=  V(- ] ) ]  it will not 
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mix ~ o  with ~ o  s t a t e s - w e  can therefore consider these two symmetry cases 
separately. With the same relationship between " + "  and "cs"  as in (9) the 
per turbat ion relationships corresponding to those in (3) and (4) are: 

V• k2) = ~Z(kl)Z(k2) W*(k~)W(k2) (10) 
n 

and 

W~:(k) = ~ u(j) cs (jk). (11) 
i=0 

But if V is symmetric in j the distribution function u(j) will also be. Then of 
the two types of function defining W+ and W_ in (11) only the cosine function 
W§ will give rise to a non-zero perturbat ion matrix since W_ will consist of the 
mutually cancelling pairs of terms u(j) sin (jk) + u(-]) sin (-jk). We need there-  
fore consider only the function ~ ~  defined by 

= Xj cos (jk) (12) 
v n  1=0 

which gives rise to the general perturbat ion matrix 

~/Z(kl)Z(k2)[ + ] 
V+(kl, k2) = v 1 + ~ u(j) cos (jkl) 

n L j = l  

I ,] x 1+ u(j) cos(jk2 �9 (13) 
.=  i 1 

In (12) and (13) n is still the number  of basic Bloch wave functions ~~  
defined in (1) that are being combined. But since the basic microstates (8) now 
being considered consist of symmetry-reduced functions each of which is 
derived f rom a ~~  and ~ ~  pair, n will be about  twice the number  of 
�9 P+(k) states in the calculation, allowance being made for the unique k = 0 and 
k = ~r states if included. 

3. Numerical Results 

In a preliminary series of calculations the number  of microstate wave functions 
used to represent  the energy band was varied (for different conditions of 
amplitude, exponent  and band width) to investigate the convergence of the 
results with respect to n in (13). It was found that for most  of the conditions 
considered, convergence, as decided by the energy e of the discrete "per turba-  
t ion" level (see Sect. 3.1), was complete by n = 16, though in a small number  of 
cases an n value of 20 had to be used to achieve this. In order  to ensure 
confidence in the convergence of subsequent calculations a value of 30 was 
uniformly used, except in the "sample  calculation" of Sect. 3.1 where, so as to 
display results adequately for the purpose of discussion, the smaller value 
n = 16 (nine ~ ~  microstates] was used. In fact convergence was almost 
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achieved even in this c a s e - t h e  reported discrete energy level e = 0.7028 eV 
changes only to 0.7022 eV at complete convergence, thus validating the use of 
this calculation to represent the features of the subsequent investigations. 

3.1. Sample Calculation 
The matrix /-/ to be diagonalised, defined by Eqs. (5), (6) and (13), was 
constructed using the real microstate wave functions (12). Ew was assigned a 
value of - 1 0  eV, the sign indicating a E~ curve with a maximum at the 
centre of the Brillouin zone. The band was perturbed by a potential V in which 
the function u(j) appearing in (13) was defined by the Gaussian form 

u(j) = u(0) exp (-aft) (14) 

where u(0) = 1, and the amplitude v of the perturbation chosen as 2.0 eV. The 
exponent  a in (14) was put  equal to 2. Note that such a u(j) function gives the 
necessary symmetric perturbation function V(]), and that the chosen value of 
the exponent  in this case indicates a highly localized perturbation site of just 
one or two segments. 

The elements of the perturbation matrix V (Table 1) reflect the observations 
made in Sect. 2.3, namely, that the most significant elements are those for kl 
and k2 close to zero. (The apparently smaller values for the elements involving 
the k = 0 state occur because the Z value [Sect. 2.4] of such a state is half that 
of the other  states since we are using symmetry-reduced basis functions.) 

The result of the diagonalization of /-/ is to produce a spectrum of energy 
eigenvalues Elq which, with one exception, lie within the range of the unper- 
turbed E~ energy band, 0 to - 1 0  eV. In fact if the Elq values were plotted 
against their "effective k values" 

e f f m  

i 

1 _ _  +0.7028 eV, would lie the points, except that for the high-energy state at Uq.- 
very close to the curve of the E~ function, as we shall see in Sect. 3.2. The 
symbol q* will be used to label such discrete states as this one. EqL is separated 
by an energy gap e = 0.7028 eV from the nearest E~ microstate, and also by 
an almost equal gap from the nearest of the remaining perturbed band state 
energies Uq~. The nature of this discrete state is also revealed by its eigenvectors 

" ' '  ~ '  " " O " g_.(k). Table 1 shows that the coefficients of the nor m ~ n u  us 
states are s t rongly~peakedat  some~partfe~TfffW~-gI~e so that gq(k) 0.9, the 
contfibti'ti0ns from the remaining microstates being very small. The coefficients 
of the higher two perturbation states are peaked' less  strongly, and at low k 
values. In other words, while each of the "normal"  states is essentially an 
unper turbed microstate ~ ~  of the band, the upper two contain a signific- 
antly greater admixture of other microstates. However,  of these states only one 
constitutes a discrete level. 
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An implication of the g(k) distribution is seen if we write the perturbed state 
wave function, using (1) and (2) as follows: 

N N 

�9 ~ = N - m  ~, gq(k,) ~, exp (ijk,)xj 
i j 

--->N-I/2~[; gq(k)exp(ijk)dk]x j as N---~ ~ (16) 
] 

(or the corresponding real form). Clearly the "broader"  the g(k) dis t r ibut ion-  
i.e. the more ~~  states are mixed in to form ~ 1 _  the smaller will be the 
value of the square-bracketed Fourier transform integral in (16) for segments 
other than ] -  0. But since this quantity is the coefficient of the ]th segment in 
the per turbed orbital, the effect of V in creating the discrete states is to localize 
the wave function ~ .  at the perturbation site. 

3.2. Variation of the Perturbation 

The same energy band as that used in the previous section was perturbed by a 
potential giving rise to V(kl, k2) elements again calculated by (13) and (14). 
The shape of the potential function was varied by changing its amplitude v, and 
also its extent by the use of different values a as exponent  in (14). The results 
are shown in Fig. 2, where the curve is that of the unperturbed energy band 
function E~ given by (6) with Ew = - 1 0  eV. The microstates ~~ selected 
by dividing the Brillouin zone into 30 points are shown by the 16 points (X) on 
the energy curve. The circled points are the eigenvalues E1 of H plotted 
against their k~ ~ values as defined in (15). 

Increasing the perturbation amplitude has the effect of increasing the separa- 
tion e of the "discrete" perturbation level from the band while leaving the 
remaining states almost as unperturbed microstates ~~ So as to avoid 
complicating the diagram, which is intended primarily to show the discrete 
perturbation levels E~., the non-discrete or quasi-continuous energies E~ only 
for the "most  per turbed"  conditions are plotted in Fig. 2 - those corresponding 
to v = +10 eV and a = 0.25; the rest would lie even closer to the E~ curve. 
As expected the points tend to coincide with those of the unperturbed 
microstates as we leave the k -  0 region. 

The same trend as that resulting from increasing v is followed when the V 
function is broadened by reducing the exponent  a. If we use the quantity 
~ e -ai2 to measure the number of segments affected by the perturbations 
considered we find 1.1 segments for a = 3, 1.8 for a = 1 and 3.5 for a = 0.25: 
there is clearly a sharp rise in the e values as the number of perturbed 
segments increases. 

The discrete states derived from a negative perturbation potential (v < 0) have 
smaller e values than those for v > 0, as expected from the discussion in Sect. 
2.3. Figure 2 shows that for small perturbations these states derive mainly from 
~ ~  microstates with k in the region of ~- (which naturally produce small 
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Fig. 2. The application of the segment perturbation V to a 10 eV energy band E~ (continuous 
curve), with various perturbation amplitudes v (-10 to +10 eV) and exponents a 

separations e). As - v  increases, however, H in (5) eventually becomes 
dominated by its component Iv" so that the perturbation states ~P~. receive 
greater contributions from ~~ microstates near the centre of the Brillouin 
zone. 

3.3. Variation of the Width Ew of the Energy Band 

With the exponent fixed at a = 1 Ew was varied from - 2 0  to +20 eV; in this 
way the behaviour of the two types of band referred to in Sects. 2.2 and 
2 . 3 - m a x i m u m  at k = 0 and minimum at k = 0 - w a s  investigated. Figure 3 
shows how the separation of the discrete level e from the band varies with the 
width Ew of the two band t y p e s - t h o s e  with Ew < 0 and Ew > 0 respectively. 

As we would e x p e c t - f o r  example from (7 ) -  the narrower the band the larger 
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the  va lue  of e, and  as seen  in Sects.  2.3 and  3.2 a pos i t ive  p e r t u r b a t i o n  
p r o d u c e s  a g rea t e r  effect  on b a n d s  with  a m a x i m u m  at k = 0 (Ew < 0 reg ion  of 
Fig. 3) than  on  those  wi th  a m i n i m u m  at  k = 0 (Ew > 0 region) .  Na tu ra l l y  the  
conve r se  is t rue  for  the  nega t ive  p e r t u r b a t i o n s  (v < 0 )  and  so the  fami ly  of 
curves  (v = - 2 . 5 ,  - 5 . 0 ,  etc.) can be  o b t a i n e d  by  inver t ing  the  c o r r e s p o n d i n g  
p o s i t v e - v  curve  t h rough  the  origin.  T h e  e va lue  t ends  to a p r o p o r t i o n a l i t y  wi th  
v for  n a r r o w  energy  bands  and  increases  m o r e  r ap id ly  wi th  v for  la rge  ]JEw] 
values .  

3.4. Step Potential 

I n s t ead  of the  func t ion  (14) which descr ibes  a p e r t u r b a t i o n  with a m a x i m u m  
effect at  one  s egmen t  and  which d imin ishes  with increas ing  d i s tance  f rom this 
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point, we could consider one which exerted the same influence on a specified 
number of different segments. Such a step function could be defined by the 
conditions 

u(])= 1 for j = 0 , + l  . . . . .  + m ]  

and ~ (17) 

u(j) = 0 for all other segmentsJ  

A potential derived from this function would simplify the matrix element 
expression (13) by omitting the factor u(]) in the summands and by including 
just the ] segments 1 to m in the summations. 

The results of applying such a perturbation to the 2m + 1 adjacent segments 
implied by (17) are broadly similar to those discussed using the gaussian 
function (14). Indeed. if we compare the e values obtained using the function 
(14) of the same width (which would be ~j~o e -aj2 for the Gaussian, as in Sect. 
3.2, and 2m + 1 for the step function) and amplitude v, the results (Table 2) are 

Table 2. Discrete-level separation energies e (eV) as calcu- 
lated by a Gaussian (Eq. 14) and by a step function (Sect. 
3.4) form for u(j) and their dependence on the widths of the 
perturbation. Other data: E,~ = - 1 0  eV, v = 2 eV 

Gaussian u(j) Step function u(]) 
a width a e width e 

7.5 1.00 0.39 1 0.39 
0.35 2.99 3.61 3 4.84 
0.126 4.99 6.78 5 9.25 
0.064 7.01 9.76 7 13.44 

a See Sect. 3.4 

at least of the same order and become more nearly equal as the widths 
decrease towards unity. This suggests that apart from the parameters v and w 
the perturbation results are not very sensitive to the finer details of the V 
function, particularly if the potential is a "narrow" one. 

4. Chain Link Distortion Perturbation 

4.1. Theory 

In this section we consider a polymer chain subjected to a perturbation V' 
which distorts a single chain link. In order  to express V' consider a plane 
boundary intersecting the circular polymer chain between segments j = 1 and 
j = N which of course are adjacent (Fig. 4). Then V' acts on the polymer by 
modifying the interactions between segments on opposite sides of the bound- 
ary. As in Sect. 2 we shall suppose that the effect of V' on the chain functions 
~F~ can be obtained by constructing the perturbation matrix V' and 
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/ / /  /~ ~ ~ ~ ~  

/ V' % 
Fig. 4. The definition of the single link distortion perturbation V' applied between the segments 
j = l  and j=N  

diagonalizing the resulting energy matrix /-/ as was done for the matrix 
expressed in (5). 

We shall now write the real microstate functions ~ ~  as 

, / Z ( k )  N { 0 ~ k <  "/7" 
"I'~ x, cs(i-�89 (18) 

i=1 0<k~<Tr  

rather than as (9) in order  that they reflect the symmetry of Fig. 4 which has a 
mirror plane between segments j = 1 and j = N. Notice that, unlike the limits 
declared in (8), the k range of the cosine function ~ o  does not include the 
point k = yr. 

The general element of V' expressing the perturbative interaction between kl 
and k 2 is now 

V ' ( k l ,  k2) = 4Z(k l )Z (k2 )  N * N 
N i 1XiCS(i-~) 1] [ i~lXiCS(i-1)k 2 dr 

N 
4Z(k j )Z (k2 )  f ,  V ,  2cs 01 1 (i2-�89 (19) -- --~)k I CS 

N il,i2 = 1 
where 

V'P" f * , .... = Xil V Xi: dr 

is the change in the interaction between segments i~ and i 2 o n  opposite sides of 
the boundary when the perturbation is applied. Again "cs" means cosine or 
sine according to the choice of upper or lower sign in + respectively. Clearly 
the greatest contribution to V' will be from V'~,., which is the change suffered 
by the integral ~ x*Hx~  dr expressing the interaction between segments 1 and 
N; the next largest will be V'  - ' ' - ' 2,N-- V1,N-I'  followed by V3, N -  V1,N_2, etc. It 
should also be obvious that the magnitudes of the elements V'~,,~ diminish 
rapidly along such a series which, however, is not the natural order of i2. 

We therefore replace the labels il and i2 by the pair Jl and 12 which count the 
segments in opposite directions, starting at i = 1 and i = N respectively (see Fig. 
4). Then the new labels are defined by 

Jl = il ) 

and l " (20) 
]2 = N + 1 - i 2 
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We wish to simulate a perturbation with the effect described by modifying the 
Hhj 2 elements 1 through a component  V~lj2. Then the largest V~lj2 quantity will 
be that for jl = J2 and the other elements will decrease with increasing ]2 +12- 
We propose the relation 

V~,j~ = v' e -aj (21) 

where 

J = ]1 + J2 -- 2 (22) 

is a measure of the separation of the segments on either side of the boundary; 
the quantity v', which is analogous to v in Sect. 2.1, will similarly be termed 
the "ampli tude" of the perturbation since it denotes the element of greatest 
magnitude, VI1. 

Transforming (19) according to (20) and (21) we get 

N 
W.(kl, k2) = v' x/Z(kl)Z(k2) ~ cs ([ j l -1]ka)  cs ([1-j2]k2)e-"( 

N h &- 

Although we pointed out the rapid decay of V;, h as J2 and J2 progress along the 
series 1, 2, 3, etc. it must be remembered that as the j 's approach N they give 
rise to V~m terms similar to those for small j2 and ]2. The terms resulting from 
the replacement of Jl and ]2 by N - J l  and N - ] 2  will be written separately with 
the j 's extending over just the small values required for convergence: 

small 
V ~ ( k l ,  k2) t~' x / Z ( k l ) Z ( k 2 )  ~ [cs  ( J 1 - � 8 9  cs  1 - = (~-  12) ka 

N h,i~= 1 
1 - 

+ CS (g --  ]1) k l  CS (12 -- 1) k2]e-~( 

Using (22) to replace the summation over Je by one ~ (j) depending on just the 
separation of the segments across the boundary we have, for the + and - 
states: 

sm~I1 
V~-(kl, k2) 2vt x/Z(kl)Z(k,2) cos (J1-�89 cos (Jl 3 = - -  - ~ ) G  

tl L h = l  
small 

x ~ e -"j Coslk2 
]=h-1 

and 

small small 1 
+ -~ c0s(j . l - �89 sin " 3 (11-5)k2 ~ e -a~ sin ]k2 (23) 

11 = 1 . . . . . . . . . . . . . . . . . . . . . . .  j,-~.4a=.l ....... 

small small 
VL(k~, k2) = 2v_f' ~/Z(k~)Z(k2) ~ sin (ja-�89 ka sin (Je-3) k~ ~ e -a~ cos jk2 

YI c j 1 J=h 1 
small small 

--  ~ s in  ( J l - � 8 9  c o s  (j1-23-)k2 ~ e -a J  s in  j k 2 ] .  (24)  
Jl = 1  ] = j l  1 

1 A strict transformation of labels would of course take Hi~i2 into Hi1 N+I-j2 however we shall 
shun the inelegance of such subscripts and write Hhh and V~. 1112" 
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As in (3) and (13) N has been replaced by n since we are limited to a finite 
number of microstates. 

4.2. Microstates Affected by V'  

An examination of the expressions (23) and (24) defining the matrix elements 
of V' and for the + and - functions (18) reveals that the microstates 
�9 ~ --0) which are likely to be the most per turbed by V' are ~ ~  --0) and 
�9 ~ = 7r); those corresponding to the other  k values are subject to a "destruc- 
tive interference" by successive j-segments, similar to that referred to in Sect. 
2.3 for the V(kl, k2) terms. Unlike the case of the chain segment perturbation 
V discussed in Sects. 2 and 3 therefore,  we must now retain both ~ o  and ~0  
functions to investigate the possible creation of discrete states by the chain link 
distortion perturbation V'. Moreover  (23) and (24) predict energy shifts from 
the band energies at k = 0 and k--~r  in opposite directions to give rise to 
possible discrete states derived from ~ ~  and @~ = ~-). 

As in the previous sections the directions of the perturbative shifts sustained by 
�9 ~ = 0) and ~ ~  -- ~-) depend on the sign of the amplitude of the perturba- 
tion, v'. For  v ' >  0, corresponding to an extension of the link between segments 
] = 1 and j = N (Fig. 4), ~ ~  -- 0) is displaced upwards and @~ = 7r) down- 
wards, though the requirement  that E~ = 0) be a maximum and E~ = 7r) a 
minimum (Sect. 2.3) is of course valid also here. We shall again assume the 
band dispersion relationship (6) with Ew (usually) negative so that the band has 
a maximum at the centre, and minimum at the edges, of the Brillouin zone, but 
shall bear in mind the complementarity of this model with that in which the 
band maximum and minimum are reversed and in which v, is negative. 

We can summarize the observations made in the previous paragraph as follows. 
A polymer chain subjected to an extension at one inter-segment link may give 
rise to discrete states ~ .  both above and below the unperturbed band 
provided the band is one with a maximum at the centre, and minimum at the 
edges, of the Brillouin zone. A compression of the polymer at one segmental 
link, on the other hand, would not necessarily be expected to produce discrete 
states, at least for small or moderate  amplitudes Iv'l of compression, but  might 
generate such states from energy bands which have a minimum at the centre, 
and maximum at the edges, of the Brillouin zone. 

4.3. Numerical Results 

Just as in the segment perturbations of Sects. 2 and 3, a series of preliminary 
calculations established that the computed special states ~ .  and their energies 
E~. were independent of the division of the Brillouin zone into a finite 
number (n) of microstates, and that increasing n beyond 16 or 20 had 
negligible effect on the results. With the exception of the "sample calculation" 
to be reported for illustration purposes the value of n was consequently again 
set at 30 in order to ensure convergence. 
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Table 3. Sample calculation [Energies E~, effective k-values and eigenvectors gq(k)] for link 
perturbation V' with v '=  lev, E ~  = - 1 0  eV and n = t 6 .  (see Sect. 4.3) 

(a) "cosine" states 'tr~ 

E~ k~ n k: 0.0000 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562 2.7489 

0.4019 0.167 0.800 0.555 0.204 0.089 0.044 0.023 0.012 0,005 
-0.1913 0.263 -0 .587 0.801 0.104 0.037 0.017 0,009 0.004 0.002 
-1.2907 0.762 -0 .110 -0.211 0.968 0.076 0.028 0.013 0.007 0.003 
-2 .9650 1.170 -0 .042 -0.065 -0 .099 0.991 0.045 0.017 0.007 0.003 
-4.9263 1.568 -0 .020 -0.030 -0 .034 -0.052 0.997 0.026 0.009 0.003 
-6 .8749 1.962 -0.011 -0.015 -0 .016 -0 .019 -0 .029 0.999 0.015 0.004 
-8.5195 2.356 -0 .006 -0 .008 -0.008 -0 .008 -0 .010 -0 .016 0.999 0.007 
-9.6156 2.749 -0 .002 -0.003 -0.003 -0 .004 -0.005 -0.005 -0 .007 0.999 

(b) "sine" states ~o 

E~ k~ fr k: 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562 2.7489 3.1416 

-0.3976 0.394 0.999 -0 .029 -0.015 -0 .010 -0.008 -0 .006 -0 .006 -0 .004 
-1.5221 0,788 0.028 0.998 -0 .048 -0 .025 -0.017 -0 .013 -0 .012 -0 .008 
-3.1886 1.181 0.015 0.045 0.996 -0 .064 -0.033 -0 .024 -0 .020 -0.013 
-5.1367 1.575 0.010 0.025 0.058 0.993 -0 .081 -0 .044 -0 .034 -0.022 
-7.0719 1.970 0.008 0.017 0.032 0.071 0.988 -0 .110 -0 .064 -0 .040 
-8.7046 2.370 0.007 0.014 0.023 0.040 0.089 0,974 -0 .182 -0.091 
-9.7834 2.827 0.005 0.010 0.017 0.027 0.048 0.113 0.874 -0 .469 

-10.2137 3.032 0.009 0.018 0.029 0.045 0.077 0.155 0.444 0.877 

The exponent a in (21) was taken as 2.0 since this value approximately 
describes the decay of the/- /~2 atomic orbital integrals for the carbon atom as 
calculated [10] by the Wolfsberg-Helmholtz relationship using Slater AOs. 

The eigenvalues and eigenvectors of the "sample calculation" with n = 16 are 
shown in Table 3 where the usual 10 eV wide energy band (with minimum at 
the BZ centre) has been perturbed by a function with amplitude v '=  +1.0 eV. 
In terms of the Wolfsberg-Helmholtz-Slater relationship referred to such a 
perturbation of a pure -n-MO, for example, could describe the extension of a 
C-C segmental link by - 0 . 1  ~ .  The spectrum of energy eigenvalues Elq and 
their ~e~, 0 nq s for both ~+  and ~~ cases show quasi-cont!nuous_ energy 
levels approximately in the range 0 to - 1 0  eV,wh~ch-ar~ practically equivalent 
to the microstate energies Of the unperturbed band E~ Superimposed on 
these levels and prominently separated from them, above and below, are the 
pair at E ~ . ( + ) = 0 . 4 0 1 9  and E ~ . ( - ) = - 1 0 . 2 1 3 7 e V  which are derived from 
the ~ o  and ~ o  functions respectively. (The effect of increasing n is to pack the 
range 0 to - 1 0  eV more closely with quasi-continuous levels, leaving the states 
Eql.(+ ) and E ~ . ( - )  unchanged.) 

The eigenvectors show the same features as those discussed in Sect. 3.1 for the 
V perturbation, reflecting a greater degree of microstate mixing for the discrete 
states qs~.(+ ) which, as we saw, indicated localization at the perturbation site. 
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Figures 5 and 6 respectively illustrate the effects of varying the amplitude v' of 
the perturbation V' and the width Ew of the energy band and are analogous to 
Figs. 2 and 3 for the V perturbation. Both positive and negative perturbations 
are illustrated in Fig. 5 but only the xI'~ functions are found to give rise ~o 
discrete states when v' is negative. Probably the (v '<0) -genera ted  x!'~.(+) 
states would appear for large Iv'l (cf. Fig. 2), i.e. for a sufficiently large 
compression of the selected link, but it was decided to restrict the extent of the 
distortion to that which is chemically feasible. 

In Fig. 6, which demonstrates the variation of the discrete state separations e 
with the width Ew of the energy band only positive perturbations were 
selected, but in view of our discussion (Sect. 2.3) on the complementarity of the 
signs of v' and Ew it should be clear that the effect of reversing the sign of v' 
would be to invert the curves in Fig. 6 through the origin. 

5. Discussion 

In this work a polymer wave function was perturbed at a single site on the 
chain so simulating a practical feature of the polymer such as a defect or 
distortion at such a point. The result, a generation of electronic energy states 
shifted from the energy band by amounts roughly proportional to the perturba- 
tion amplitude, consists of a set of energetically sensitive MOs which are 
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Fig. 6. The separation e of the "discrete state" energy level from the band E~ as a function of 
the width E w of the band, upon application of V' 

localized in the region of the perturbation. Since oribtals of favourable sym- 
metries and energies play decisive r61es in qualitative [12] and quantitative [13] 
descriptions of chemical reactivity our results suggest that perhaps we should 
consider the use of such a perturbation approach to treat some of the features 
involved in an encounter  between a polymer and a reacting species. 

The results of the single link distortion perturbation V' of Sect. 4 are qualita- 
tively similar to those of the chain scission perturbation reported in Ref. 4, 
where discrete states were produced from calculated energy bands in simple 
hydrocarbon polymers and where, unlike the present case, segmental AO 
interactions were considered. For a study of chemical reactions, however, 
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w h i c h  (at  l eas t  fo r  h y d r o c a r b o n  p o l y m e r s )  a r e  m u c h  m o r e  l ike ly  to  p r o c e e d  by  

a concerted p r o c e s s  t h a n  by  a cha in  r u p t u r e  f o l l o w e d  by  a m o l e c u l a r  e n c o u n t e r ,  

an  a p p r o a c h  us ing  a p o t e n t i a l  such  as V, w h i c h  can  b e  m a d e  to  v a r y  s m o o t h l y  

a l o n g  t h e  r e a c t i o n  c o o r d i n a t e ,  is p r o b a b l y  m o r e  rea l i s t ic .  

References 

1. Born, M., von K~irmfin, Th.: Z. Phys. 14, 15 (1913); Bloch, F.: Z. Phys. 52, 555 (1928); 
Altmann, S. L.: Band theory of metals (the elements), Chapt. 3. Oxford: Pergamon Press 
1970; Levin, A. A.: Solid state quantum chemistry, Chapt. 2. New York: McGraw Hill 1977 

2. Koster, G. F., Slater, J. C.: Phys. Rev. 95, 1167, 1436; ibid 96, 1208 (1954); Zunger, A.: 
Ann. Soc. Sci. Bruxelles 89, 231 (1975); McCubbin, W. L.: Andr6, J.-M., Delhalle, J., Ladik, 
J. (Eds.): The quantum theory of polymers, p. 185; Dordrecht: D. Reidel (1978); Martino, F.: 
ibid p. 169; Del Re, G.: ibid p. 199 

3. Morton-Blake, D. A.: Intern. J. Quantum Chem. (in press) (1980) 
4. Morton-Blake, D. A.: Theoret. Chim. Acta (Berl.) 51, 85 (1979) 
5. Heine, V.: Group theory in quantum mechanics, Chapt. VI. Oxford: Pergamon Press 1960; 

Quinn, C. M.: Quantum Theory of Solids, Chapt. 2. Oxford: Clarendon 1973 
6. Karpfen, A., Petkov, J.: Theoret. Chim. Acta (Berl.) 53, 65 (1979) 
7. Gurman, S. J., Pendry, J. B.: Phys. Rev. Letters 31, 637 (1973); Feuerbacher, B., Willis, R. F.: 

J. Phys. C 9, 169 (1976) 
8. Maue, A. W.: Z. Physik 94, 717 (1935); Goodwin, E. T.: Proc. Cambridge Phil. Soc. 35, 205, 

221,232 (1939); Statz, H.: Z. Naturforsch. 5a, 434 (1950); Levine, J. D.: Phys. Rev. 171, 701 
(1968); Phariseau, P.: Physica 26, 737 (1960); Davison, S. G., Levine, J. D.: Solid state 
physics, Vol. 25. New York: Academic Press 1970 

9. Imamura, A.: J. Chem. Phys. 52, 3168 (1970); Morokuma, K.: J. Chem. Phys. 54, 962 (1971); 
Andr6, J.-M., Delhalle, J.: Andr6, J.-M., Delhalle, J., Ladik, J. (Eds.): The quantum theory of 
polymers, p. 1. Dordrecht: D. Reidel 1978; Andr6, J.-M., Ladik, J.: Proceedings of the NATO 
ASI on the electronic structure of polymers and molecular crystals, p. 1, B9: Plenum Press, 
and references therein 

10. Wolfsberg, M., Helmholtz, L.: J. Chem. Phys. 20, 837 (1952) 
11. Slater, J. C.: Phys. Rev. 36, 57 (1930) 
12. Woodward, R. B., Hoffman, R.: The conservation of orbital symmetry, Weinheim: Verlag 

Chemic 1970; Fleming, I.: Frontier orbitals and organic chemical reactions, London: John 
Wiley and Sons 1976 

13. Daudel, R.: Quantum theory of chemical reactivity. Dordrecht: D. Reidel 1973 

Received January 28, 1980 


